Design of Adder / Subtractor Circuits Based on Reversible Gates
نویسنده
چکیده
Reversible logic has extensive applications in quantum computing, it is a unconventional form of computing where the computational process is reversible, i.e., time-invertible. The main motivation behind the study of this technology is aimed at implementing reversible computing where they offer what is predicted to be the only potential way to improve the energy efficiency of computers beyond von Neumann-Landauer limit. It is relatively new and emerging area in the field of computing that taught us to think physically about computation Quantum Computing will be a total change in how the computer will operate and function. The reversible arithmetic circuits are efficient in terms of number of reversible gates, garbage output and quantum cost. In this paper design Reversible Binary AdderSubtractorMux, Adder-SubtractorTR Gate., Adder-SubtractorHybrid are proposed. In all the three design approaches, the Adder and Subtractor are realized in a single unit as compared to only full adder/subtractor in the existing design. The performance analysis is verified using number reversible gates, Garbage input/outputs and Quantum Cost.The reversible 4-bit full adder/ subtractor design unit is compared with conventional ripple carry adder, carry look ahead adder, carry skip adder, Manchester carry adder based on their performance with respect to area, timing and power. Hence the proposed work is useful in low power applications where both adder and subtractor units are required
منابع مشابه
Evolutionary QCA Fault-Tolerant Reversible Full Adder
Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...
متن کاملReversible Programmable Logic Array (RPLA) using Feynman & MUX Gates for Low Power Industrial Applications
This paper present the research work directed towards the design of reversible programmable logic array using very high speed integrated circuit hardware description language (VHDL). Reversible logic circuits have significant importance in bioinformatics, optical information processing, CMOS design etc. In this paper the authors propose the design of new RPLA using Feynman & MUX gate. VHDL base...
متن کاملRealization of a Novel Reversible SCG Gate and its Application for Designing Parallel Adder/Subtractor and Match Logic
In recent years, Quantum Electronics and Reversible Logic have emerged as a major area of research having applications in low power CMOS circuits, cryptography, optical computing and nanotechnology. The fact that classical logic gates such as AND, OR, XOR etc., barring the NOT gate, cannot predict the input given the output and hence generate heat due to information loss, has given rise to the ...
متن کاملDigital Combinational Circuits Design By QCA Gates
Different logic gates like MV, NOT, AOI, NNI etc under QCA nanotechnology are introduced. NNI gate is highly effective regarding space and speed consideration. Any Boolean functions are synthesized by MV and NNI gates or simply NNI gates alone, eliminating inverter (NOT) gate. A new method for realizing adder circuit in binary reversible logic is invented. This procedure synthesizes for a more ...
متن کاملSynthesis and Designing of Reversible Adder/Subtracter Circuits
Reversible logic circuits have emerged as a promising technology having its applications in low power CMOS, Quantum Computing, nanotechnology, and optical computing. Power is the major constraint for any circuit Each circuit demands not only low power, but fast speed. This paper is focused on the efficient design of the full Adder/Subtractor with the help of half adder subtractor with single co...
متن کامل